Room-temperature defect-engineered spin functionalities in Ga(In)NAs alloys

نویسنده

  • Yuttapoom Puttisong
چکیده

Semiconductor spintronics is one of the most interesting research fields that exploits both charge and spin properties for future photonics and electronic devices. Among many challenges of using spin in semiconductors, efficient generation of electron spin polarization at room temperature (RT) remains difficult. Recently, a new approach using defect-mediated spin filtering effect, employing  2 i Ga -interstitial defects in Ga(In)NAs alloys, has been shown to turn the material into an efficient spin-polarized source capable of generating > 40% conduction electron spin polarization at RT without an application of external fields. In order to fully explore the defect-engineered spin functionalities, a better understanding and control of the spin filtering effects is required. This thesis work thus aims to advance our understanding, in terms of both physical and material insights, of the recently discovered spin filtering defects in Ga(In)NAs alloys. We have focused on the important issues of optimization and applications of the spin filtering effects. To improve spin filtering efficiency, important material and defect parameters must be addressed. Therefore, in Papers I–III formation of the  2 i Ga defects in Ga(In)NAs alloys has been examined under different growth and post-growth treatment conditions, as well as in different structures. We found that the  2 i Ga defects were the dominant and important nonradiative recombination centers in Ga(In)NAs epilayers and GaNAs/GaAs multiple quantum wells, independent of growth conditions and post-growth annealing. However, by varying growth and post-growth conditions, up to four configurations of the  2 i Ga defects, exhibiting different hyperfine interaction (HFI) strengths between defect electron and nuclear (e-n) spins, have been found. This difference was attributed to different interstitial sites and/or complexes of  2 i Ga . Further studies focused on the effect of post-growth hydrogen (H) irradiation on the spin filtering effect. Beside the roles of H passivation of N resulting in bandgap reopening of the alloys, H treatment was shown to lead to complete quenching of the spin filtering effect, accompanied by strong suppression in the concentrations of the  2 i Ga defects. We concluded that the observed effect was due to the passivation of the  2 i Ga defects by H, most probably due to the formation of H 2 i Ga complexes. Optimizing spin filtering efficiency also requires detailed knowledge of spin interactions at the defect centers. This issue was addressed in Papers IV and V. From both experimental and theoretical studies, we were able to conclude that the HFI between e-n spins at the  2 i Ga defects led to e-n spin mixing, which degraded spin filtering efficiency at zero field. Moreover, we have identified the microscopic origin of electron spin relaxation ( 1 T ) at the defect centers, that is, hyperfine-induced e-n spin cross-relaxation. Our finding thus provided a guideline to improve

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.

متن کامل

Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor.

Generating, manipulating and detecting electron spin polarization and coherence at room temperature is at the heart of future spintronics and spin-based quantum information technology. Spin filtering, which is a key issue for spintronic applications, has been demonstrated by using ferromagnetic metals, diluted magnetic semiconductors, quantum point contacts, quantum dots, carbon nanotubes, mult...

متن کامل

Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor.

Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient sp...

متن کامل

Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias.

Rational material design can accelerate the discovery of materials with improved functionalities. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014